278 research outputs found

    Gallium arsenide design methodology and testing of a systolic floating point processing element

    Get PDF
    Thesis (M.E.Sc.) -- University of Adelaide, Dept. of Electrical and Electronic Engineering, 199

    Evidence of a causal relationship between body mass index and psoriasis:A mendelian randomization study

    Get PDF
    Background: Psoriasis is a common inflammatory skin disease that has been reported to be associated with obesity. We aimed to investigate a possible causal relationship between body mass index (BMI) and psoriasis. Methods and Findings: Following a review of published epidemiological evidence of the association between obesity and psoriasis, mendelian randomization (MR) was used to test for a causal relationship with BMI. We used a genetic instrument comprising 97 single-nucleotide polymorphisms (SNPs) associated with BMI as a proxy for BMI (expected to be much less confounded than measured BMI). One-sample MR was conducted using individual-level data (396,495 individuals) from the UK Biobank and the Nord-Trøndelag Health Study (HUNT), Norway. Two-sample MR was performed with summary-level data (356,926 individuals) from published BMI and psoriasis genome-wide association studies (GWASs). The one-sample and two-sample MR estimates were meta-analysed using a fixed-effect model. To test for a potential reverse causal effect, MR analysis with genetic instruments comprising variants from recent genome-wide analyses for psoriasis were used to test whether genetic risk for this skin disease has a causal effect on BMI. Published observational data showed an association of higher BMI with psoriasis. A mean difference in BMI of 1.26 kg/m2 (95% CI 1.02-1.51) between psoriasis cases and controls was observed in adults, while a 1.55 kg/m2 mean difference (95% CI 1.13-1.98) was observed in children. The observational association was confirmed in UK Biobank and HUNT data sets. Overall, a 1 kg/m2 increase in BMI was associated with 4% higher odds of psoriasis (meta-analysis odds ratio [OR] = 1.04; 95% CI 1.03-1.04; P = 1.73 × 10-60). MR analyses provided evidence that higher BMI causally increases the odds of psoriasis (by 9% per 1 unit increase in BMI; OR = 1.09 (1.06-1.12) per 1 kg/m2; P = 4.67 × 10-9). In contrast, MR estimates gave little support to a possible causal effect of psoriasis genetic risk on BMI (0.004 kg/m2 change in BMI per doubling odds of psoriasis (-0.003 to 0.011). Limitations of our study include possible misreporting of psoriasis by patients, as well as potential misdiagnosis by clinicians. In addition, there is also limited ethnic variation in the cohorts studied. Conclusions: Our study, using genetic variants as instrumental variables for BMI, provides evidence that higher BMI leads to a higher risk of psoriasis. This supports the prioritization of therapies and lifestyle interventions aimed at controlling weight for the prevention or treatment of this common skin disease. Mechanistic studies are required to improve understanding of this relationship

    Primary gliosarcoma: key clinical and pathologic distinctions from glioblastoma with implications as a unique oncologic entity

    Get PDF
    This report presents the historical experience, clinical presentation, treatment, prognosis, and pathogenesis of gliosarcoma described to date in the English literature. PubMed query of term “gliosarcoma” was performed, followed by a rigorous review of cited literature. Articles selected for analysis included: (1) case reports of gliosarcoma, (2) review articles of gliosarcoma, and (3) studies of the pathogenesis or genetics of gliosarcoma in humans. Our review identified 219 cases of gliosarcoma in 34 reports and eight articles addressing the pathogenesis. Survival in larger series ranged 4–11.5 months. Features unique to gliosarcoma compared to glioblastoma (GBM) include their temporal lobe predilection, potential to appear similar to a meningioma at surgery, repeated reports of extracranial metastases, and infrequency of EGFR mutations. Published experience is limited to small case series, and the pathogenesis remains unclear. Clinical and pathologic characteristics distinct from GBM suggest that they may warrant specific treatment, separate from conventional GBM therapy

    Is disrupted sleep a risk factor for Alzheimer's disease?:Evidence from a two-sample Mendelian randomization analysis

    Get PDF
    Background It is established that Alzheimer’s disease (AD) patients experience sleep disruption. However, it remains unknown whether disruption in the quantity, quality or timing of sleep is a risk factor for the onset of AD. Methods We used the largest published genome-wide association studies of self-reported and accelerometer-measured sleep traits (chronotype, duration, fragmentation, insomnia, daytime napping and daytime sleepiness), and AD. Mendelian randomization (MR) was used to estimate the causal effect of self-reported and accelerometer-measured sleep parameters on AD risk. Results Overall, there was little evidence to support a causal effect of sleep traits on AD risk. There was some suggestive evidence that self-reported daytime napping was associated with lower AD risk [odds ratio (OR): 0.70, 95% confidence interval (CI): 0.50–0.99). Some other sleep traits (accelerometer-measured ‘eveningness’ and sleep duration, and self-reported daytime sleepiness) had ORs of a similar magnitude to daytime napping, but were less precisely estimated. Conclusions Overall, we found very limited evidence to support a causal effect of sleep traits on AD risk. Our findings provide tentative evidence that daytime napping may reduce AD risk. Given that this is the first MR study of multiple self-report and objective sleep traits on AD risk, findings should be replicated using independent samples when such data become available

    Multidisciplinary investigations of the diets of two post-medieval populations from London using stable isotopes and microdebris analysis

    Get PDF
    This paper presents the first multi-tissue study of diet in post-medieval London using both the stable light isotope analysis of carbon and nitrogen and analysis of microdebris in dental calculus. Dietary intake was explored over short and long timescales. Bulk bone collagen was analysed from humans from the Queen’s Chapel of the Savoy (QCS) (n = 66) and the St Barnabas/St Mary Abbots (SB) (n = 25). Incremental dentine analysis was performed on the second molar of individual QCS1123 to explore childhood dietary intake. Bulk hair samples (n = 4) were sampled from adults from QCS, and dental calculus was analysed from four other individuals using microscopy. In addition, bone collagen from a total of 46 animals from QCS (n = 11) and the additional site of Prescot Street (n = 35) was analysed, providing the first animal dietary baseline for post-medieval London. Overall, isotopic results suggest a largely C3-based terrestrial diet for both populations, with the exception of QCS1123 who exhibited values consistent with the consumption of C4 food sources throughout childhood and adulthood. The differences exhibited in δ15Ncoll across both populations likely reflect variations in diet due to social class and occupation, with individuals from SB likely representing wealthier individuals consuming larger quantities of animal and marine fish protein. Microdebris analysis results were limited but indicate the consumption of domestic cereals. This paper demonstrates the utility of a multidisciplinary approach to investigate diet across long and short timescales to further our understanding of variations in social status and mobility

    Tales of the unexpected: the selection of British party leaders since 1963

    Get PDF
    Jeremy Corbyn’s election as Leader of the Labour Party in 2015 stunned observers and practitioners of British politics alike. In this article, we first outline a theoretical framework that purports to explain why political parties operating in parliamentary systems choose the leaders they do. We then examine 32 leadership successions involving five major British parties since 1963, and note that many of these were unexpected, in that they were triggered by unforeseen circumstances, such as the sudden death or resignation of the incumbent. Examining each party in turn, we briefly explain why the winners won and identify at least eight cases (a quarter of our sample) where a candidate widely expected to prevail at the outset was ultimately defeated by a ‘dark horse’, ‘second favourite’ or even ‘rank outsider’. Of these, Corbyn’s election in 2015 was the most unexpected and, consistent with the findings of studies of party leadership conventions in other parliamentary systems, namely Canada and Spain, suggests that ideological and policy concerns are sometimes more important than considerations of party unity and electability, especially when a leadership contest is dominated by party activists

    Current and Historical Drivers of Landscape Genetic Structure Differ in Core and Peripheral Salamander Populations

    Get PDF
    With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in two core regions (Washington State, United States) versus the species' northern peripheral region (British Columbia, Canada) where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a ‘flat’ landscape), but at the periphery, topography (slope and elevation) had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management

    Island survivors: population genetic structure and demography of the critically endangered giant lizard of La Gomera, Gallotia bravoana

    Get PDF
    Background: The giant lizard of La Gomera (Gallotia bravoana), is an endemic lacertid of this Canary Island that lives confined to a very restricted area of occupancy in a steep cliff, and is catalogued as Critically Endangered by IUCN. We present the first population genetic analysis of the wild population as well as of captive-born individuals (for which paternity data are available) from a recovery center. Current genetic variability, and inferred past demographic changes were determined in order to discern the relative contribution of natural versus human-mediated effects on the observed decline in population size. Results: Genetic analyses indicate that the only known natural population of the species shows low genetic diversity and acts as a single evolutionary unit. Demographic analyses inferred a prolonged decline of the species for at least 230 generations. Depending on the assumed generation time, the onset of the decline was dated between 1200-13000 years ago. Pedigree analyses of captive individuals suggest that reproductive behavior of the giant lizard of La Gomera may include polyandry, multiple paternity and female long-term sperm retention. Conclusions: The current low genetic diversity of G. bravoana is the result of a long-term gradual decline. Because generation time is unknown in this lizard and estimates had large credibility intervals, it is not possible to determine the relative contribution of humans in the collapse of the population. Shorter generation times would favor a stronger influence of human pressure whereas longer generation times would favor a climate-induced origin of the decline. In any case, our analyses show that the wild population has survived for a long period of time with low levels of genetic diversity and a small effective population size. Reproductive behavior may have acted as an important inbreeding avoidance mechanism allowing the species to elude extinction. Overall, our results suggest that the species retains its adaptive potential and could restore its ancient genetic diversity under favorable conditions. Therefore, management of the giant lizard of La Gomera should concentrate efforts on enhancing population growth rates through captive breeding of the species as well as on restoring the carrying capacity of its natural habitat.Spanish Ministry of Education; European Life Project [LIFE 02 NAT-E-008614]; Ministerio de Ciencia e Innovacion [REN 2001- 1514/GLO, CGL 2010-18216]info:eu-repo/semantics/publishedVersio

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) has been shown to be influenced by both fetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease. These life-course associations have often been attributed to the impact of an adverse early life environment. Here, we performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where fetal genotype was associated with BW (P\textit{P}  < 5 × 108^{-8}). Overall, approximately 15% of variance in BW was captured by assays of fetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (R\textit{R}g_{g} = -0.22, P\textit{P}  = 5.5 × 1013^{-13}), T2D (R\textit{R}g_{g} = -0.27, P\textit{P}  = 1.1 × 106^{-6}) and coronary artery disease (R\textit{R}g_{g} = -0.30, P\textit{P}  = 6.5 × 109^{-9}). In addition, using large -cohort datasets, we demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P\textit{P} = 1.9 × 104^{-4}). We demonstrate that life-course associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and identify some of the pathways through which these causal genetic effects are mediated.For a full list of the funders pelase visit the publisher's website and look at the supplemetary material provided. Some of the funders are: British Heart Foundation, Cancer Research UK, Medical Research Council, National Institutes of Health, Royal Society and Wellcome Trust

    Genome-wide associations for birth weight and correlations with adult disease

    Get PDF
    Birth weight (BW) is influenced by both foetal and maternal factors and in observational studies is reproducibly associated with future risk of adult metabolic diseases including type 2 diabetes (T2D) and cardiovascular disease1. These lifecourse associations have often been attributed to the impact of an adverse early life environment. We performed a multi-ancestry genome-wide association study (GWAS) meta-analysis of BW in 153,781 individuals, identifying 60 loci where foetal genotype was associated with BW (P <5x10-8). Overall, ˜15% of variance in BW could be captured by assays of foetal genetic variation. Using genetic association alone, we found strong inverse genetic correlations between BW and systolic blood pressure (rg-0.22, P =5.5x10-13), T2D (rg-0.27, P =1.1x10-6) and coronary artery disease (rg-0.30, P =6.5x10-9) and, in large cohort data sets, demonstrated that genetic factors were the major contributor to the negative covariance between BW and future cardiometabolic risk. Pathway analyses indicated that the protein products of genes within BW-associated regions were enriched for diverse processes including insulin signalling, glucose homeostasis, glycogen biosynthesis and chromatin remodelling. There was also enrichment of associations with BW in known imprinted regions (P =1.9x10-4). We have demonstrated that lifecourse associations between early growth phenotypes and adult cardiometabolic disease are in part the result of shared genetic effects and have highlighted some of the pathways through which these causal genetic effects are mediated
    corecore